
Function Arity Pseudo-code
prog 2 (a) then return (b)

> (Magnitude) 4 if (a.mag > b.mag) then (c) else (d)

> (Angle) 4 if (a.ang > b.ang) then (c) else (d)

X = 1 variable X = (a)

+, -. * 2 [standard vector arithmetic]

Function Set

Terminal Effect
base returns vector from guard to base

direction returns unit vector representing guard’s heading

X return (variable X)

Vector [static vector]

Terminal Set

Genetic Programming of Autonomous Agents
Bradley University 2011

By: Scott O’Dell Advisor: Dr. Joel Schipper

Abstract

Genetic Programming Framework

Research in genetic programming (GP) for the control of autonomous agents often employs grid-based simulations to
evolve prototypical solutions. However, grid-based simulations produce solutions that are often impractical on
physical robotic platforms. Our research evolves perimeter maintenance control programs to illustrate the limitations
of grid-based approaches and explore the advantages of using a continuous simulator when evolving programs for
physical autonomous agents.

Perimeter maintenance is a task where a group of autonomous “guard” agents are deployed around a “base” to detect
“enemy” agents before they reach the base. For this research, GP software and simulators were developed to
approximate the movements of physical agents. To illustrate the limitations of evolving autonomous agent control
programs using a grid-based simulator, early experiments evolved perimeter maintenance agents in the grid domain.
Later experiments replaced the grid-based simulator with a continuous simulator to demonstrate its advantages when
generating control programs for physical autonomous agents. The experiments performed explore multiple fitness
functions for evolving homogenous and heterogeneous teams of guards as well as the co-evolution of guards and
enemies. The approach has produced autonomous agent control programs that display intelligent perimeter
maintenance behavior in a continuous simulator by patrolling a circular area around the base.

The software framework and simulator is written in the Ruby programming language. Ruby’s object-oriented nature
contributed to the rapid development of reusable software components.

Results of Evolutionary Sequences

Grid-Based Simulations

Continuous Simulations

Noisy Simulations
To test if genetic programming can deal with
uncertainty in the environment, Gaussian noise was
added to the simulations. Any terminal that is based
on sensor data has noise with a constant variance,
and each movement is subject to noise with a
variance that is equal to 1/10th the magnitude of the
ideal movement.

Evolution of Guards
Each guard is controlled using the same program. Enemies start on
the edge of the simulation and moves directly toward the base.

Co-evolution of Guards & Enemies
Enemies are evolved with the same primitive set as the guards with
the addition of terminals that provide the position of the closest
guard. Evolving the enemies simultaneously with the guards produces
less exploitable solutions from the guards.

Process of Genetic
Programming

Architecture of GP
Framework

Function Arity Pseudo-code
prog 2 (a) then return(b)

> 4 if (a > b) then (c) else (d)

+, -, *, /, % 2 [standard integer arithmetic]

Function Set

Terminal Effect
base returns Manhattan distance from guard to base

forward moves agent forward, returns “base”
left turns agent left 90 degrees, returns “base”

right turns agent right 90 degrees, returns “base”
0-6 constant integers

Terminal Set

